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Finite-dimensional matrix representations of the Poincarb group are discussed 
with particular emphasis on the eight-dimensional spinor representation. It is 
speculated that the complex eight-dimensional representation space might be 
interpreted as a more fundamental entity than Minkowski space, being in a sense 
a square root of the latter. One can model the usual position, momentum, and 
angular momentum variables of a particle of nonzero rest mass and arbitrary 
spin by real bilinear forms in the 8-spinor components, and obtain their correct 
equations of motion by subjecting the spinor to a Schr6dinger-like evolution 
equation. 

1. N O T A T I O N  A N D  C O N V E N T I O N S  

1.1. Conjugation Operat ions.  Superscript  *, 7-, t applied to a vector or 
matrix denotes, respectively, the complex conjugate,  transpose, Hermit ian 
conjugate.  

1.2. Designation of Groups. O(p, q) and U(p, q) denote  the groups of  
( p  + q ) x ( p  + q)  matrices which satisfy oTllpqO = rip q and Ut~lvqU = ~lpq, 
respectively, where ,lvq is diagonal  with p eigenvalues 1 and q eigenvalues 
- 1 .  SO(p,  q) and SU(p,  q) are the subgroups whose matrices have unit 
determinant .  P denotes the full Poincar~ group of  inhomogeneous  Lorentz  
t ransformat ions  and P +r its o r thochronous  proper  subgroup.  

1.3. Alphabet Conventions. Lower  case Greek letters take the values 
0,1, 2, 3 and are reserved for componen t s  of  Minkowski  space vectors and 
tensors. The early lower case Latin letters a, b . . . . .  h = 0,1,2,  3, 5, 6, 7, 8 and 
the late letters r, s . . . .  = 0,1, 2, 3, 5, 6 belong to S0(2, 6) and S0(2, 4) vectors 
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and tensors, respectively. The  letters i, j ,  k, 1, m, n take special values speci- 
fied in context.  Capital  Latin letters refer to spinor components ,  the early 
letters A, B . . . .  = 1, 2, 3, 4, 5, 6, 7, 8 belonging to 8-spinors and the late letters 
Q, R . . . .  = 1, 2, 3, 4 to 4-spinors. 

1.4. Metr ic  Tensors .  The  metrics belonging to Minkowski space, 0 (2 ,  4) 
and 0 (2 ,6 )  are, respectively, 

g= [g~x] = [g ' a ]  = d i a g ( 1 , -  1 , -  1 , -  1), 7/6= [ ~]6rs] = [1~6 s] 

= diag(1, - 1 ,  - 1 ,  - 1 ,  - 1 ,1) ,  

r/8 = [ 's~h ] = [ 7/~ hI = diag(1, - 1, - 1, - 1, - 1,1,  - 1, - 1). 

*15 denotes the singular metric diag(1, - 1, - 1, - 1,0). 

1.5. Levi-Citiv/I T e n s o r  D e n s i t i e s .  T h e  p e r m u t a t i o n  symbo l s  
t t~hp', e rstuvw, e abcdefgh take the values _+ 1,0 according as the indices form an 
even, odd, or not  a permuta t ion  of the s tandard order  0123, 012356, 
01235678. 

1.6. Miscellaneous. If x is real s g n ( x ) =  + 1,0 according as x is posi- 
tive, negative, or zero. A bar  placed over a symbol  turns a column vector  of 
contravar iant  components  into a row vector of covariant  components .  Thus  
if a is a column vector of  Minkowski vector components  a ~ then ~ = arg is 
the row vector of components  a~. If ~k is a 4-spinor or an 8-spinor then 
J / =  ~*fl with the appropr ia te  fl specified in context.  

2. I N T R O D U C T I O N  

In special relativity theory the coordinates  x x, (x  x)' ,  ascribed to a point  
event by two different  inertial observers are related by a Poincar6 transfor-  
mat ion (L ,  a):  

(x x)'= - ( 1 )  

The  Lorentz  matr ix L is an element  of the group O(1, 3) and thus satisfies 
LrgL = g, while the translation - a x gives the coordinates  of the origin of 
the unpr imed observer referred to the pr imed observer.  The  mult ipl icat ion 
rule for carrying out two Poincar% t ransformat ions  in sequence, (L2, a2) 
first and then (L1, al) ,  is (L1, a l ) (L2,  a2) = (LxL2,  Lla 2 + al) .  In particu- 
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lar we can effect (L, a) as the homogeneous Lorentz transformation (L,0) 
followed by the translation (14, a). 

The full Poincar6 group P is a nonconnected Lie group with four 
connected components, corresponding to the four pieces of O(1,3). The 
component connected to the identity is a normal subgroup of P, the 
orthochronous proper Poincar~ group P+~ whose elements preserve both 
the direction of time and the righthandedness of the spatial axes (L ~ > 1, 
det L =1). If (L, a) takes all values in P+~ then ( •  Lg, a) = (L, a)(+_ g,O) 
and ( - L, a) = (L, a ) ( -  I4,0 ) range over the other three disjoint pieces of 
P. (g,0), ( - g , 0 ) ,  and ( - I 4 , 0 )  are the space inversion, time reversal, and 
space-time inversion operations, respectively. While these latter improper 
transformations cannot be effected on physical inertial observers (passive 
poin~ of view) they are important in quantum theory when one seeks the 
parity and time reversal properties of states (active point of view). Similarly 
a physical observer can only undergo future-pointing timelike translations. 
Spacelike and past timelike translations only make sense from an active 
point of view. 

The unitary irreducible representations of the universal covering group 
of P +r on a Hilbert space are well known (Wigner, 1939; Bargrnan, 1948; 
Foldy, 1956; Shirokov, 1958; Fronsdal, 1959; Lamont and Moses, 1962, 
1964) and play an essential role in relativistic quantum theory. Such 
representations are necessarily infinitely dimensional since we are dealing 
with a noncompact group. On the other hand, the finite-dimensional 
representations are less well documented. These representations are known 
implicitly through the transformation properties of special relativity tensors, 
and through P +~ being a subgroup of the conformal group, which is locally 
isomorphic to SO(2,4) and SU(2,2) (Cartan, 1914; Dirac, 1936; Mural, 
1953. 1954; Bracken and Jessup, 1982). However, these finite-dimensional 
representations are rarely spelled out explicitly. The purpose of this paper is 
to make explicit some properties of these representations, with particular 
emphasis on the eight-dimensional spinor representation of the full Poincar6 
group P_ Many of these properties are already contained implicitly or in 
disguised form in the literature. 

The plan of this paper is as follows. Section 3 summarizes the simpler 
real representations of P. In Section 4 we consider the four-dimensional 
complex twistor representation (Dirac, 1936; Hepner, 1962; Kastrup, 1962; 
Penrose, 1967) expressed in a form which enables ready comparison with 
the results of the following section, 5. Sections 3 and 4 are not intended to 
be comprehensive reviews of these topics but merely to recall those aspects 
which help with the understanding of Section 5. The latter concerns the 
eight-dimensional spinor representation of P and contains the main results 
of this paper. The final section, 6, is speculative. It expands on the idea 
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suggested in an earlier paper (Derrick, 1982) that the eight-dimensional 
representation space could be interpreted as a more fundamental entity than 
Minkowski space, being in a rough sense a square root of the latter. 

3. REAL REPRESENTATIONS OF IP 

In this section we consider some of the simpler representations of P by 
groups whose elements are finite matrices. Thus we seek a mapping of the 
elements ~r ~ P on to n • n matrices D'(Tr) which preserves the group 
multiplication: D"( lh)D"(Tr2)= D"(Ir:r2). Only representations of dimen- 
sion n < 15 will be considered here. These will be designated Do x, D~, D 5,/~5, 
D 6, D 6, DlO, ~10 D15. A subscript 0 indicates that a representation is 
unfaithful, i.e., the mapping ~r--, D~(~r) is many to 1. A further real 
representation D 2~ will play a role in Section 5. 

In addition to the identity representation, D~ =1,  there are three 
unfaithful one-dimensional representations, (det L), sgn(L ~ and sgn(Lo ~ 
(de tL) .  From any representation D" of P we can obtain three more 
inequivalent representations of the same degree: (det L)D", sgn(L~ ", 
and sgn(L~ L)D". 

3.1. The Fundamental Representation D s. The smallest faithful repre- 
sentation of P is five-dimensional (Schweber, 1962): 

where the matrix is partitioned 4 + 1  and a is the column vector of 
components a ~, r = 0,1,2, 3. The constant l is of dimensions length but its 
value has no physical significance since different values yield equivalent 
representations. Throughout this and subsequent sections we shall insert 
such a constant whenever necessary to make all representation matrix 
elements dimensionless. 

D 5 is the representation to which the coordinates x ~ belong when 
supplemented by a fifth coordinate x 4 -= l. If x denotes the column vector 
with the five rows x" ,x  4, then the transformation (1) takes the form 
x" = DS(L, a)x. 

Accustomed as we are to dealing with irreducible representations, it is 
disconcerting to note that D 5 is reducible but not completely reducible 
(Boemer, 1963). Maschke's theorem on complete reducibility does not apply 
to a noncompact group. It is characteristic of the faithful finite representa- 
tions of P that they have invariant subspaces in which the vectors transform 
according to representations of O(1,3). Any representation of the latter 
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necessarily yields an unfaithful representation when extended to P by 
mapping all translations on to the unit matrix. 

3.2. The Representations Do I and D~. From the invariant subrepresen- 
tations of D 5 we thus obtain two further representations, both unfaithful, 
the scalar representation D~(L, a ) =  1 and the O(1, 3) vector representation 
D4(L, a) = L. Physical quantities which belong to these representations are, 
for example, the mass m of a particle and coordinate differences, both 
translationally invariant: 

m ' = m  

K),= (2) 

The linear momentum p~ of a particle transforms according to sgn(L~ 

( p" )' = sgn( I. ~  p" (3) 

The factor sgn(L ~ ensures that the momentum remains future pointing. 

3.3. The Representations D !~ and D 6. The angular momentum j ' ~ =  
- j "  of a particle transforms under (1) according to 

( j " ) '  = sgn( L~ L'xL;jXt' - ( a 'L; - a"L; ) p t'] (4) 

Combining (3) and (4) shows that p~ a n d j  '~ together belong to a ten-dimen- 
sional representation Dt~ a). If we write j 4~' - - jt~4 = lp~, p, = 0,1,2,3, 
then (3) and (4) show that the 5 x 5  matrix jik, i , k = 0 , 1 , 2 , 3 , 4  is an 
antisymmetric second-rank tensor belonging to sgn(L~ 5 x Ds: 

( j+k) '=  sgn(L ~ ) DS'tDSk.,j"~ (5) 

Once again we have a faithful and reducible but not completely 
reducible representation. As before the invariant subrepresentations corre- 

Lo)Do spond to translationally invariant O(1, 3) tensors. In addition to sgn( o 4 
we obtain the six-dimensional representation D 6 associated with second-rank 
antisymmetric tensors, to which belongs the spin angular momentum s '~ = 
_ S~ .  

(s '~ )' = sgn( L~ x~' (6) 
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3.4. The Representat ion D 6. There is also a faithful six-dimensional 
representat ion D 6 of  P (Fillmore, 1977). F rom the space-time coordinates  
x ~ define x 5 = � 8 9  K ) - l ]  and x 6 =  � 8 9  K ) +  l], where K 
is an arbitrary constant  and I a nonzero  length as before. The six quantities 
x ~, r = 0 ,1 ,2 ,3 ,5 ,6  satisfy vl6~,x~x s = K,  l ' 1 6 r s b r x  s = l, where [*16r,] = [716 r s ]  ~- 

diag(1, - 1, - 1, - 1, - 1,1) and b r = (0,0,0,0,1,1) .  Wri t ing X for the co lumn 
vector with the six componen ts  x ~ then (1) implies that X' = D6( L,  a ) x  with 

D 6 ( L , a )  = 

L a / l  - a / l  I 

d L / l  l + � 8 9  2 - � 8 9  2 ) 6 L / I  � 8 9  2 1 - � 8 9  2 

(7) 

and D6(L,  a)  ~ 0(2,4) .  In (7) 6 is the row vector arg, and different values 
of  the length ! yield equivalent representations. 

D 6 brings out  the relation of  0 (2 ,4 )  to P.  0 (2 ,4 )  is the group of  6 x 6  
matrices D satisfying Drvl6 D = r/6. If  we further restrict D by Db = b we 
obtain a subgroup of  0 (2 ,4 )  isomorphic  to I~. In  the context  of  the 
conformal  group one would take K = 0 and regard x r as six coordinates  in a 
projective 5-space, with xX/ (brx  r) being the Minkowski  coordinates  (Dirac, 
1936). However,  since our  interest is in the Poincar6 group we break the 
conformal  invariance by giving br xr  a constant  value. 

There is another,  equivalent way of  looking at the relation of  these two 
groups. We can regard P as a degenerate case of the de Sitter groups 
O(2,3),  O(1,4) with metric diag(1, - 1, - 1, - 1, + e), obtained by the 
InOnt i -Wigner  contract ion e--, 0. ( Inrni i  and Wigner 1953; Evans, 1967). 
The group of  5 x 5 matrices D which satisfy Dr~sD = ~5, det D = + 1 with 
v/5 = d i a g ( 1 , -  1 , - 1 , -  1,0) is s imply the set DS(L ,  a),  the smallest faithful 
representat ion of P.  Consider  now a six-dimensional flat space with coordi-  
nates x r, r = 0,1,2,  3, 5, 6 and the metric 7/6. On  restricting the points  to lie in 
the five-dimensional hyperplane brx r = x 6 - x 5 = const, implying dx 5 = dx 6, 
we obtain as effective metric the singular matrix ~5. Whence  we again 
observe that P is isomorphic to the subgroup of  0 (2 ,4 )  which leaves b 
invariant. 

3.5. The Representation D is. Consider  a particle of  zero rest mass with 
future null m o m e n t u m  pX. The equat ion of its null trajectory may  be written 
x x = z x + ~pX, where �9 is a parameter  and z x is any fixed point  on the curve. 
Following Penrose (1967) we may  choose z x as the point  of  intersection of  
the particle trajectory with the light cone through the origin, thus zx zx = O. 
Changing  coordinates  according to (1), (3) yields (xX) ' =  ( z X ) ' +  ~,(pX), 
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where 

( zX ) ' =  LXz~ + .roLXp~'- a x 

�9 ' =  s g n ( L ~  

r o = (axLX~z ~' - � 8 9  x ) / (  p , z ' -  a,L', ,p") (8) 

The shift in parameter by ~'o is necessary to make (zX) ' null. We can allow 
the denominator in r o to vanish if we "compactify" the Minkowski space by 
adding a closed null cone at infinity (Penrose, 1967). The nonlinear trans- 
formation (8) becomes linear in the 15 quantities ~ = z x pX, 

~X=~z x,px and / x~=zxp  ~ - z ~ p x :  

~' = sgn( L~ - a , L ~ p  ~ ] 

( ~ ) '  = sgn(L~ ~ - a ~ + a , L ' x L ~ l X ~ + a , ( L ' x  a~-~_~a ,r~ )pX],_.x (9) 

The orbital angular momentum l x~ transforms according to (4) so that (3), 
(4), (9) together yield a faithful 15-dimensional representation D 15. This 
representation will prove of importance in the interpretation of twistors in 
Section 4. 

D a5 is the antisymmetric part of sgn(L~ 6 x D 6. This is readily seen 
by observing that (3), (4), (9) may be combined into 

(.lr s )t _~_ s g n ( t  O) o6rtO6SultU (lO) 

where the antisymmetric tensor l rs= - l  "r, r, s = 0,1,2,3,5,6 has compo- 
nents I x~, l 5~ = l-x~ ~ - �89 ~, l 6~ = l - l ~  ~ q- �89 ~, /56 = ~. AS with D 6, D 15 can 
clearly be extended to yield a representation of the conformal group. 

3.6. Other Representations. One can construct further representations 
from the higher-rank tensors belonging to the fundamental representation 
D 5. Thus (x 'x  ~,/x ~, l 2) together generate another faithful 15-dimensional 
representation, inequivalent to that of Section 3.5. It is reducible but not 
completely so. Among the reduced parts is a faithful M-dimensional repre- 
sentation to which ( x ' x  ~ ~ '~ x - -~g  xxx  , lxK, /2)  belong, and an unfaithful 
nine-dimensional one associated with second-rank traceless symmetric 
O(1,3) tensors. Similar considerations hold for D s •  D s •  D 5, etc., but 
since these representations are not of importance to this paper they will not 
be considered further. 



366 Derrick 

3.7. The Inverse Transposed Representations. Given a representation 
D ( L , a )  we can construct another, b (  L,  a ) = [ D( L,  a ) -  l ] r, i.e., in the 
representation vector space we consider covariant vectors rather than con- 
travariant ones. Of the representations considered in Sections 3.1-3.5, 
D~, D~, D 6, D 6, D ~s are equivalent to their inverse transposes, the equiva- 
lence being achieved in a trivial way by lowering contravafiant tensor 
indices with the appropriate metric tensor, g or 76. However,/)5 and/)x0 are 
new representations, not equivalent to D 5, Dm. Combining (1) and (3) yields 
(xXpx)"  = sgn( L ~ - p~,( L -  1 )[ax], which shows that the five quantities 
(lp,, - xXpx) transform according to sgn(L~ 5. Similarly (1) and (6) imply 
that (s,~, l-Xs,xx x) belong to/)10. 

4. THE TWlSTOR REPRESENTATION D 4 

4.1. Infinitesimal Generators. In Sections 4 and 5 we will be concerned 
with projective representations, which, for all ~q, ~r 2 ~ P satisfy D(~q)D(~f2) 
-- (phase factor) D(~r17r 2). These representations are four-valued in the sense 
that the phase factor will take the four va]ues + 1, _ i, and one can pass 
smoothly between any two of the values + D(~r), +_ iD(~r) along suitable 
continuous closed paths through ~" in the group parameter space. 

We approach the problem via the Lie algebra of P +T. The ten generators 
are the angular momentum operator J'~ and the momentum operator P~ 
which satisfy the commutators 

[ J '" ,  P a l =  ih[ g . a p , _  g,Xp~] 

[ P " , P x ] = O  (11) 

Planck's constant appears in (11) for dimensional reasons. Given 
any n-dimensional matrix representation for j , ~ , p X  then D " ( L , a ) =  
e x p ( -  i axPX/h )exp (  - �89162  is a projective representation of P+~ and 
a true representation of its universal covering group. The antisymmetric 
matrix [~o,~] parameterizes L ~ S 0 ( 1 ,  3) through L = exp(g~o). It is sufficient 
to consider infinitesimal values of ~o,~ and a x for which we have D"(  L,  a)  = 
I ,  - i a x P ~ / h  - 1. ,~ -~t~o,~J / h .  Henceforth in this paper ~o,~ and a x will be 
taken infinitesimal so that quadratic or higher terms may be discarded. 

Consider now the relation of the Poincar6 and the SO(2,4) Lie alge- 
bras. The latter has 15 independent generators M r s = -  M st, r , s =  
0,1, 2, 3, 5, 6 which satisfy the commutators 

[M r', M'" ]  = i[ ~6~'MSt+ ~;'M r. _ ~?;'M'" - ~?~UM r,] (12) 
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Then e x p ( - � 8 9  rs) gives a projective representation of the SO(2,4) 
element exp('o6~), where [f~rs] is a 6 • 6 antisymmetric matrix. If we restrict 
ourselves to the Poincar~ subgroup by requiring that b r=  (0,0,0,1,1) be 
invariant then (7) implies that for infinitesimal transformations f~s takes the 
values f~,~=~0,~, ~ 5 = a ~ / l ,  f ~ 6 = - a ~ / l ,  ~56=0. Whence • ~.~ 2 ~Urs J ra 

0)t K ~ x 5  = M + a ~ ( M  - M ' 6 ) / I  and we identify 

J ~  = h M  ,~ 

P" = h ( M  "5 - M " 6  ) / / l  

-- h M ' 4 / l  (13) 

The combination 5-6 will occur so frequently in superscripts that we 
abbreviate it in (13) and subsequently by a superscript 4. As in the previous 
section the nonzero length 1 is inserted for dimensional consistency: M ~" 
dimensionless, J'~ angular momenta, P~ linear momenta. 

Hence given any matrix representation of (12) we immediately have 
one of (11) via (13). Upon exponentiation we obtain a projective representa- 
tion of P +~. One then needs to examine whether the representation can be 
extended to the improper Poincar6 transformations. 

For representations of the conformal group one supplements (13) with 
the generator of dilations, M 56, and of accelerations, M 5~ + M 6~ (Mack and 
Salam, 1969). However, these are not needed in this paper. Bracken and 
Jessup (1982) give a classification of a particular series of finite representa- 
tions of the Lie algebra of the group of Poincar6 transformations plus 
dilations. 

4.2. The Twistor Representation D 4. In his study of conformally in- 
variant wave equations Dirac (1936) indirectly defined a four-dimensional 
projective representation D 4 of P+~. The generators of D 4 w e r e  given by 
Hepner (1962) and Kastrup (1962), and have been widely applied in twistor 
theory (Penrose, 1967, 1968, 1969, 1975; Penrose and MacCallum, 1973; 
Qadir, 1978, 1980; Luehr and Rosenbaum, 1982) and in conformally 
invariant field theory (for recent reviews see Bayen, 1976; Bracken and 
Jessup, 1982). 

Let a t, 02,03, and Pl, P2, P3 be two copies of the usual Pauli spin 
matrices. Then the generators of D 4 may be derived from those of the 
four-dimensional spinor representation of SO(2,4), expressed in terms of 
the Dirac matrices yo = P3,  ( y l ,  .)t2, 7 3 )  = iP21y ' y 5  = yO.~l.,/2.)t3 = _ ipt: 

g m ~  I I m t! 
= - ~ , y  "y - - T " ' y m ) ,  m , n = O , 1 , 2 , 3 , 5  

M 6" 1 " = "~"/ (14) 
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Explicitly, 

( M  23, M 31, M12; M m, M ~ M ~ = (�89 �89 ) 

1 "  . 1 M'5 = (~tp2, ~P3 o) 

- - l p  ; - �89 ) M~6 = ( 2 3 

M,4  1 p = ~ ( 3 + i P 2 ) ( I ; o ) ,  

- t=0 ,1 ,2 ,3  

We have the identities 

(15) 

(Mr')t=flMrSfl ,  r, s = 0 ,1 ,2 ,3 ,5 ,6  (16) 

for the real symmetric orthogonal matrix fl = P3. 
The generators of D 4 are obtained by restriction to P +~ according to the 

prescription (13): 

(j23, j31, j12; jm, sO2, go3) = �89 io10") 

P" = �89 h / l ) (p3  + iP2)( I; o) 

= � 8 9  i ' ? ) ' :  (17) 

On account of (16) we have ( j , ,c)+ = flj,,cfl and (P ' )* =flP"fl so that the 
r e p r e s e n t a t i o n  D 4 satisfies [(D4)-1] f =flD4fl. Hence the matrices of D 4 
belong to SU(2,2). Denoting indices of spinors belonging to D 4 by 
Q, R . . . .  =1,2 ,3 ,4  and of those belonging to (D4) * by Q, R...  we see that 
the matrix elements of fl = fl-1 are nu.merically invariant second-rank 
spinor components of type fibs or flOR. Thus we can lower the con- 
travariant index of a 4-spinor +Q to get ~R = (+Q)*flQR and form the 
SO(2,4) scalar q2flq~ = ~R~ s. 

4.3. The Inverse Transposed Representation and Charge Conjugation. 
The representation/34 = [( D 4 ) - I ] T =  f l ( D  4),/3 is inequivalent to D 4. To see 
this we note that for equivalence there would need to exist a nonsingular 
matrix C for which CJ '~ +(J'~)rC= 0 and CP ~ + ( P ~ ) r C =  0. The usual 
value C = plo2 of Dirac electron theory satisfies the first relation but not the 
second, and hence only works for the SO(l,  3) subgroup. One easily shows 
from the irreducibility of the Pauli matrices that no suitable C exists. As a 
consequence of the inequivalence of D 4 and /34 no charge conjugation 
operation is possible for Poincar6 spinors belonging to D 4. 
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4.4. Space Inversion. As Penrose (1967) noted, no parity operation in 
the ordinary sense is possible. This can be seen as follows. If  (L,  a)  is 
proper and orthochronous then so is (gLg, ga)= (g ,0) (L,  a)(g,0).  Given 
any representation D ( L , a )  of p+r we can form another, DP(L,a)  = 
D(gLg, ga). If D p is equivalent to D then the matrix YI effecting the 
equivalence, D p = H D H  (up to a phase factor), is a representation of the 
space inversion (g,0). However in the case of D 4 we find (D4) p = 
[lo2(Da)*PlO2, inequivalent to D 4. Therefore we cannot extend D 4 to 
include space inversions. Despite the nonexistence of a charge conjugation 
operator cg and of a parity operator ~ our last result suggests that a 
combined cg~ operator is possible. In Section 5 we will show that if 
belongs to D 4 then 

( ~ ) f f  = - plo2q,* (18) 

acts as the charge conjugated reflected "state."  Alternatively we could 
represent space inversion unconventionally by the antilinear operation (18). 

4.5. Time Reversal. A similar process yields an antilinear matrix oper- 
ator to represent the time reversal ( - g , 0 ) .  If ( L , a )  is proper and 
orthochronous so is (gLg, - ga) = ( -  g,O)( L, a ) ( -  g,O), and from a repre- 
sentation D(L,  a) of p+T we can form another, Dt(L, a ) =  D ( g L g , -  ga). 
We find (D4)  ' =  0 2 ( 9 4 ) * 0 2  . Hence a suitable time reversal operation on a 
D 4 spinor ~ is 

J-q, = - a2~* (19) 

Of course arbitrary phase factors could be inserted into (18) and (19). 

4.6. Real Bilinear Forms. From any D 4 spinor ~po we can form 16 real 
linearly independent combinations of (~R).~Q, which we can take as the 
SO(2,4) scalar q = ~ p  and the SO(2,4) second-rank antisymmetric tensor 
m rs= ~TMrs~. It is interesting to classify these 16 quantities according to 
their transformation properties under the Poincar~ subgroup. With respect 
to SO(l,  3) the tensor properties are obvious: q and m 56 are scalars, m ~5 and 
m ~6 are vectors, and m '~ is an antisymmetric tensor of second rank. 
Consider now an infinitesimal translation a a. We transform the spinor 
according to ~b'= (14 - iaxPX/h)qJ, ~ '  = ~(I4  + iaxPX/h), yielding 

q' =q  

(mrS) ' - -  m rs - ( i / l ) a x ~  [M r*, M x4 ] ~ (20) 
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Applying (12) we find 

(m,~)'  = rn ,~ _ (a ,m ~4 - a ~ m , 4 ) / l  

( m ' 4 ) '  = m `4 

�89 's + m'6) ' =  �89 '5 + m '6)+  (a~rn'"  + a ' m a 6 ) / I  

(m56) ' =  m 56 - a x m ~ 4 / l  (21) 

Comparing (21) with (3), (4), (9) we see that the 15 components m rs belong 
to the representation D ~5 of Section 3.5, while m '4 and (m~ 4, - m 56) belong 
to sgn(L ~ Do 4 and sgn(L0 ~ respectively, these being invariant subrepre- 
sentations of D ]5. The factor sgn(L0 ~ is consistent with the time reversal 
(19). 

4.7. Penrose's Null Line Interpretation. The 16 real quantities q, mrs 
are functions of eight real parameters, the real and imaginary parts of ~b Q. 
Hence they cannot be independent, but indeed satisfy the identities 

m rS r~l st = --  �88 q E llr6t 

m " r n "  + r n ' m  T M  + m " m  ~" = - -~qe~ r ,  ...... m,x (22) 

Relations of this type were first given by Pauli (1936) and Fierz (1937). The 
direct proof of (22) is straightforward but too lengthy to give here. These 
relations may be derived more elegantly by the methods of Campolattaro 
(1980), or by techniques analogous to those of Appendix B. 

Taking particular index values in (22) gives m'~4mK 4--- 0, ~ , ~  = O, 
m56rn ,~  = ~ ,mK4  _ ~rrl=4 l t~Xg ~ m~5 m~6)_ - z q e  m ~ , ,  where = - �89 + The two 
null vectors  m K4, ~x are both future pointing, which can be seen from (15). If 
m 56 :# 0 the quantities p~ = hrn"4 / l  and z ~ = / ~ / / r n  56 act as the parameters 
of a null line according to the prescription of Section 3.5. Further the 
quantity s '~ = h m  '~ - ( z ' p "  - z~p ')  = - � 8 8  56 is translationally 
invariant and may be interpreted as the spin angular momentum. It satisfies 
the identity ie,~x,g s = �89  on account of (22), so that �89 is the 
helicity. 

5. T H E  EIGHT-DIMENSIONAL REPRESENTATION D s 

5.1. Motivation. There have been three main reasons for going beyond 
the simple twistor representation D 4 to higher dimensions. 

Firstly, as we saw in Section 4, D 4 )< (D4)  * does not contain the 
fundamental representation D 5. It is therefore impossible to construct from 
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a single D4-spinor (twistor) any quantities that transform like Minkowski 
space coordinates x x. Penrose (1967) represented space-time events as the 
intersection of null lines, necessitating two or more independent twistors. In 
this regard Barut and Hauger (1973) noted the necessity for going to 
eight-dimensional spinors if one wanted to construct real (six-component) 
0(2,4) vectors. 

Secondly,  D 4 does not allow a proper representation of the parity 
operator or of charge conjugation. In the context of the conformal group 
Murai (1958) pointed out that the simplest nontrivial spinor representation 
of 0(2,4) is eight-dimensional. For the SO(2,4) subgroup this reduces to the 
direct sum of the two inequivalent four-dimensional representations of 
SO(2, 4) [corresponding to D 4 and ( D 4). ]. 

Finally, in order to construct a conformally invariant wave function for 
particles of nonzero rest mass one needs eight-component wave functions 
(Barut and Haugen, 1973). The four-component theories only allow a 
treatment of massless particles. 

An analogy proves helpful here. The smallest nontrivial spinor repre- 
sentations of SO(1,3) are two dimensional, (�89 and (0,�89 which are 
inequivalent but related by complex conjugation. To describe the massless 
neutrino and antineutrino the two-component Weyl equation suffices, with 
a wave function belonging to (�89 or (0, 1 v). This equation does not possess 
either space inversion or charge conjugation symmetry, but has a combined 
cg~ symmetry (Itzykson and Zuber, 1980). On the other hand, massive 
fermions need the Dirac equation, whose four components belong to the 
Dirac representation of O(1, 3), which allows both parity and charge conju- 
gation. On restriction to SO(1,3) the Dirac representation decomposes into 
(�89 �89 

The representation D 8 is related in a similar way to Dn$(D4)  *, 
reducing to the latter when space inversion and charge conjugation are 
omitted. 

5.2. The Generators of D 8. Our procedure is analogous to that in 
Section 4. First we find an 8 • 8 representation of the commutation relations 
(12) of SO(2,4) and make the identification (13), and then we seek an 
extension to represent charge conjugation and the improper elements of P. 

In analogy with the derivation of the Dirac representation of O(1,3), 
we start from the generalized Clifford algebra (Murai, 1958; Barut and 
Haugen, 1973) 7rTs+ 2'syr= 2T/~si. From the general theory of Clifford 
algebras (Brauer and Weyl, 1935; Cartan, 1966; Salingaros, 1981, 1982) 
there exists an eight-dimensional representation of 7 r, unique up to an 
equivalence. The SO(2,4) generators are then M rs= �88 s -  7~2'r). The 
quantity 2'7 = -  3 '7= 2'~ clearly has square -18  and anticom- 
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mutes with all the 2'% giving seven mutually anticommuting 8 • 8 matrices. 
We can now enlarge the algebra to that of SO(2,6) (Derrick, 1982) by 
defining generators M r7= - M 7r= �89 7, M 8r= - M ~8 =7r,17 ~ M87__ 
- M 7 8  = �89 7. The 28 independent M ~~ a , b =  0,1,2,3,5,6,7,8 satisfy the 
Lie algebra of SO(2,6): 

[Mab, M c a l = - i [ ~ a M b ~  + ~ C M ~ ' J - ~ M e a - ~ a M  ' ']  (23) 

where 718 = diag[1, - 1, - 1, - 1, - 1,1, - 1, - 1]. 
An explicit representation for 2'% 2 '7 can be given in terms of three 

copies of the Pauli matrices (01, 0 2, 03), (Pl, P2, P3), (~1, ~'2, %): 2'0 = P3, 
(2'1, 3,2, 2'3) = ip2o ' 2'5 = _ i,rlPi ' 2 '6  = , i .201,  2 '7  = i,r3Pl. The corresponding 
generators of the representation D 8 of P +r given by (13) are 

(j23, j31, j12; jo t ,  j02, j03) = �89 (0; ipio ) 

P~ = � 8 9  2 + i'rl)(P2; - -  iP3o ) (24) 

In Appendix A we list the 28 independent M ~b and the 35 independent 
products M ~b~d = M " b M  ~a = -(1/24)e"b~defShMefgh (a, b, c, d all different). 

Given any representation M ~b of (23) it is clear that (Mab)  * and 
( - M a b )  T are also representations. In the present case both these are 
equivalent to M~b: 

( M~,b)t = flMabfl 

(M~b) r = _ CM~b C (25) 

where fl = T2p 2 and C = ~'zpao2 are real, orthogonal, and symmetric, and 
mutually anticommute. The products M abed satisfy (Mabcd) t=f lMabcdf l  
and ( MabCa) r =  CMab~dC. 

We can further extend the Lie algebra to that of U(4,4) (Derrick, 
1982). The generators are the 64 linearly independent 8 •  matrices 
18, M ~h, M ~bcd, which are all self-adjoint with respect to r ,  whose eigenval- 
ues are 1,1,1,1, - 1, - 1, - 1, - 1. Thus, apart from the transformation 
needed to diagonalize r ,  these 64 generators yield the defining representa- 
tion of U(4, 4). The matrices of the representation D 8 of P +~ will themselves 
be elements of SU(4,4), while the second equation of (25) implies that they 
are also complex orthogonal transformations in eight dimensions (up to an 
equivalence in each case). 

Let us compare this situation with that for D 4. One obtains D 4 by 
restricting to the Poincar~ subgroup the four-dimensional spinor representa- 
tion of S 0 ( 2 ,  4), the representation matrices being elements of SU(2 ,  2). The 
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latter is isomorphic to the covering group of SO(2, 4). Likewise the represen- 
tation D 8 is a restriction to P +r of the eight-dimensional spinor representa- 
tion of SO(2,6), whose matrices belong to SU(4,4). However SU(4,4) is not 
isomorphic to the covering group of S 0 ( 2 ,  6) but contains it as a subgroup. 
In the case of D 4 o n e  can attribute a physical significance to the extended 
representation through the relation of SO(2,4) and S U ( 2 , 2 )  to the confor- 
mal group. For D 8, however, no obvious physical significance is attached to 
SO(2,6) and SU(4,4) and to the representations of these bigger groups 
obtained as extensions of D 8. 

5.3. Charge Conjugation. If ~r ~ P ~ then (25) implies the relations 

= Cfl [ D8(~r )] *BC (26) 

Denoting the indices of spinors belonging to D 8 by A, B . . . .  = 
1,2,3,4,5,6,7,8 and those belonging to (DS) * by ii, B . . . .  we see that the 
matrix elements of fl  - f l - 1  =__ f t .  =_ f i r  and C = C -x  = C *  = C r are numeri- 
cally invariant second-rank spinor components of type fliB =- (~.bA)* .or 
flA8 _ (fiB,i). and CAn =- CBA or C As - C Ba or C~b =- Cb~ or C An - C BA, 
respectively. Thus, for example, we can lower the contravariant index of an 
8-spinor +A to get the covariant 47A = (~ks)*flbA, and form the SO(2,6) 
scalars ~lp = ~ptfl~p = ~Atp A and ~prc~p = CAn~pAtp s. 

According to (26) charge conjugation cg should be defined by 

~ k  = Cflq,* (27) 

or in terms of components, (<g~k) A = CA%B. 

5.4. Representation of Space Inversion. If the space inversion (g, 0) is 
to be represented by a matrix 1~ then for all ~r EP+t we must have 
DS[(g,O)Tr(g,O)]  = 1-ID8(~r)l-I up to a phase factor. In terms of the genera- 
tors, H must commute with pO, j23, j31, j12 and anticommute with 
pX, p2, p3, jox, j 02 ,  j03. By inspection of (24) either P2 or '/303 will serve. 
We choose DS(g ,0)=  P2, it being shown easily that the other choice yields 
an equivalent representation. Hence the action of the parity operator ~ on 
an 8-spinor ~k is defined, up to an arbitrary phase factor, as 

~ +  = Oz+ (28) 
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5.5. Time Reversal. The matrix r commutes with P~, p2, p3, j23, 
j31, j~2 and anticommutes with pO, jox, j02, j03. Hence for all Ir ~ p+r 
Ds[( - g ,0 ) r r ( -  g,0)] = r = r162 Thus r 
gives a representation of the time reversal ( -  g, 0). However, the operation 

~ ~'3Pzff is not a suitable candidate for time reversal if we wish P" and J'~ 
to have the attributes of physical linear and angular momenta. Instead we 
define time reversal as the antilinear operation 

o y-q, = r ` (29) 

with @as in (27). With the definition (29) the momenta transform properly: 

y - (pO,  j01, jo~, j03)  o y--t  = (pO, j01, jo2, sO3) 

and 

,y-(p1, p2, p3, j23, j31, j12),y--- 1 = _ ( p 1 ,  p2, p3, j23, j3 , ,  j12) 

5.6. Relation to D45(D4)  *. The matrix S = � 8 9  z I + P t  - ~'lPl) is 
real, orthogonal, and symmetric and effects the transformation S( T l, r r 
= (rl,  r2Pl, r S(px, P2, P3) S = (Pl, r r Applying this transforma- 
tion to the generators of D 8 given in (24) leaves J '"  unchanged and 
transforms P* according to SP"S = �89  3 + ip2)(I; 0 ) -  E2(P3 - 
iP2) ( I ; -  0)]. Here E 1 and E 2 stand for the projection operators �89 + r 
and �89 - r respectively, which satisfy E~ = E 1, E~ = E 2, ExE 2 = O, E 1 + 
E 2 = I. A further transformation by the unitary, Hermitian matrix ~. = E 1 + 
E2p302 yields 

Y,S(J 23, j 31, j12; j o , ,  j02, jO3)s  ~ = �89 h[ Ex ( o; iP lO ' )  --  E 2 ( O'; lP10' )*" 

s  p1, p2, p 3 ) s  x =  �89 h / l ) [  El(p3 + iP2)(i ;  a)  

-E2(p3+ip2)(I;o)*] (30) 

Hence comparing (17) with (30), for r ~ • +~, 

zsDs( ) sy. = EID4(  ) + E2 [ D'(  * (31) 
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The  t ime reversal opera to r  defined by (29) also decomposes  into a 
direct  sum over  invar iant  subspaces:  

s = E ~ ( -  %)(E~ZSq~)* + E 2 ( -  % ) ( E ~ Z S + ) *  (32) 

which is consis tent  with (19). However ,  neither the charge conjugat ion 
opera to r  Cgof (27) nor  the par i ty  opera to r  ~ o f  (28) decomposes  in this way. 
Never theless  the p roduc t  cg~  assumes the direct sum form 

Y ~ S ( C ~ )  = E l ( -  P l O 2 ) (  E l Y ,  S ~  ) * + E 2 ( -  O I 0 2 ) (  E 2 Y . S ~  ) * ( 3 3 )  

consis tent  with (18). 
Summar iz ing  the contents  of (31), (32), (33), we have the reduct ion 

D 8 =  D 4 * ( D 4 )  * for p roper  o r thochronous  Poincar6 t rans format ions  and 
for  oq'and r but  not  for ~' and  ~ separately.  

5.7. Real Bilinear Forms,  P.~ Behavior. F r o m  any D 8 spinor  +A we can 
fo rm 64 real l inearly independent  combina t ions  of  (q~B)*~bA, which we shall 
take as q = ~/,q~, m ~b = ~kM~O~k and m ~bca = ~Mabcdt~. There  are 28 indepen-  
dent  m ab, while the identities m "b~a- --(1/24)e"h~deYgJ'm4gh reduce the 
n u m b e r  of  independen t  m "b~a to 35. With  respect  to SO(2,6) ,  q is a scalar 
and m a~ m ~b~a are comple te ly  an t i symmet r ic  cont ravar ian t  tensors of  rank 
2 and  4, respectively. 

Let us classify these quant i t ies  according to their t r ans fo rmat ion  prop-  
erties under  the Poincar6 group. With  respect  to the homogeneous  Lorentz  
group S0(1 ,  3) we have: eight scalars, q, m 56, m 57, m 58, m 67, m 68, m 78, m 0123 

= m5678;  eight vectors  m '5, m '6 ,  m LT, m LS, m ~678, m ~578, m '568, rlq L567, four sec- 
I ~Xp- 67 mtX68 1 _ , c M , .  57 m~K78 ond- rank  tensors m '~, m ''58 --- ~_e mx~ , , = ~ e  r r t ~  , 

- �89  sr. We  need not  consider  the th i rd-rank tensors because of the 
�9 "fi~r m eK'k5 --~KAV.rvl 678 r n t K X 6 -  pexX~trn 578 r n L ~ h 7 -  t~LKhtxrn 568 r n L ~ X 8 -  ldentl  . . . . . . .  = ~ " 'u  , "'" = ~ ""~ , "'" = -  "" ,  ' "" = 

e~hp. 567 ,-rL . . . .  l _ :L_ , :  . . . . . .  ~ 5 6 - -  :.__Lx78 ._.LPr :...Lx68 . . .~K67-- :...or - e m ,  . l i l t : :  COII lOl l la t lOl lb  m "1- l m  , m 1- trrt , rrt "l- lrrt 

are self-dual: m 'g56 + irn,~78 _- • __ .---,~56 + im,~78~,, etc. 
Consider  now an infinitesimal t ranslat ion a x, with the spinor  t ransfor-  

ming  according to + ' =  (18 - iaxPX/h) tk ,  ~ / =  ~ ( I 8  + iaxPX/h):  

q ' = q  

( m a b ) '  = m ~ _ ( i / l ) a x ~ [  M ah, M X4 ] 

(mabCa) '  = rn ahcd- ( i / l ) a x ~ k [ M  abCJ, M x4 ] (34) 
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Apply ing  (23) we find the t ranslat ion proper t ies  of  the m~h: 

( m 5 6 ) '  = m 56 _ a,,m"4/l 

m47) = m 47 

�89 + m67)" = �89 m67) - a,m7"/l 

(m'8)'= m'8 

�89 5s + m6S)'  = �89 58 + m 6 S ) - a , m S ' / l  

(m78) ' = m TM 

(m,4) '_--  m ,4 

�89 '5 + m'6)  ' =  �89 '5 + m '6) + (a,,m'" + a'm56)/l 

(roT,)'  = m 7, _ a,m47/l 

( m 8 , ) '  = m s` _ a,m48/l 

Derrick 

In  (35) we have used the linear combina t ions  m 57 q- m 67, m 5s + m 68, m '5 + 
m '6 because this effects simplification.  For  a,  b = 0 ,1 ,2 ,3 ,5 ,6  the m ab be- 
have like their D 4 analogs in (21), and thus belong to D 15. However ,  we now 
have two independent  vectors,  ( m  7', m 47) and (m s', m 48) belonging to the 
fundamen ta l  representa t ion  D 5. I f  m 47 :#: 0 then m7~//m47 t r ans forms  like the 
coordinates  of  an event  in Minkowski  space, likewise mS'/m 4s. Further ,  
rn 7s, m s~, s = 0 , 1 , 2 , 3 , 5 , 6  each belong to 0 6 o r  equivalent ly are SO(2 ,4 )  
vectors,  while m TM is t ranslat ional ly  invariant .  

The  c o m m u t a t o r s  [ M  ab, M caef] are given in Append ix  A. Apply ing  
them to (34) yields the t ransla t ion proper t ies  of  m'~Ocd: 

( m  5678 ) ' =  m 5678 _ axm~478/l 

mL478)" = mL478 

�89 '578 + m'678) " =  �89 '578 -F m'678) + (aKm 'x78 -F a'm5678)/l 

(mL567)" = me567_ a,cmLX47/l 

(m,568)" = m,568 _ a,~m,,~48/l 

(35) 
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LX48) ' = m ~48 

�89 '~58 + m'~68)' = �89 ,~58 + m '~68) 

(m'~78) ' = m '~78 - ( a 'm ~478 - a~m '478 ) /1  (36) 

Once again we have used _+ combinations of terms with superscripts 5, 6 to 
achieve simplification. Further simplification results from replacing m '~58 + 

- ~  ~,,,x . . . .  J . . . . . . . .  z . . . . .  j the self-dual 
SO(1,3) tensors f '"  -= � 89  ' '57 + m " 6 7 ) +  �89 '"58 + m " 6 8 ) ,  h ' "  = m ' x 4 7 -  

i m  'x48. These satisfy r - ~ .g.x~,. h,. ~ �9 , .x , -  --2 t }x~,, = ~te nx~,, and under translations 
transform according to 

( h , ~ ) ' = h  ,~ 

( f ' " ) '  = f ' " - ( i a x e ' " X ' f ,  + a ' f " -  a y ' ) / l  (37) 

( f ' ) ' = f ' - a , , ( h ' " ) * / l  

where f ' =  m ' 5 6 7 q  - i m  '568. Thus the ten independent complex quantities 
(h ' ' )* ,  f '~, f '  belong to a complex ten-dimensional representation, which we 
denote D~ ~ Alternatively if we use the real and imaginary parts rather than 
the self-dual combinations we have a real 20-dimensional representation 
D 2~ -- D~~ (D~~ *. The latter reduction of D 20 fails when we consider the 
improper operations in the next section. 

5.8. Real Bilinear Forms, Improper Transformations. Under the charge 
conjugation (27) m ab is left invariant, while q and m abca change sign. This 
follows from the relations ( Mab) T= --CM~bC, ( Mabcd) T= CMabcdc and 
c/~+~c=0. 

All M ab and M abca either commute or anticommute with Pz and the 
m ab and m "bca correspondingly are unchanged or reverse sign under the 
parity operation (28). We thus find the following parity properties: 
q,  m 56, m 57, m 67 are scalars (unchanged); m 58, m 68, m 78, m 5678 pseudoscalars 
(change sign); m aS, m x6, m xv, m h567 vectors (h = 0 unchanged, 1,2, 3 change 
sign); mX8, mX678, mX568, mh578 pseudovectors ( h = 0  changes sign, 1,2,3 
unchanged); m a~', m x~'56, m a'57, m a"67 tensors (h/~ = 23, 31,12 unchanged, 
01, 02, 03 change sign); m a~58, m x~'68, m ht~78 pseudotensors (h~t = 23, 31,12 
change sign, 01,02,03 unchanged). The self-dual combinations f '~ and h '~ 
transform into components of their complex conjugates, thus (f23, f31, f12) 
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(f23, f31, f12)*, (f01, f02, f03) ~ __(fOX, f02, f03) . ,  h,~ hkewise. Hence 
of the representations D 1~ D~ ~ defined following (37), only D 2~ allows a 
linear representation of parity�9 

The time reversal properties under (29) follow similarly: q, m 57, m 67, m 78 
are invariant, m 56, m 58, m68, m 5678 change sign; m xT, m ~'568 behave like 
space-time coordinates (h = 0  changes sign, 1, 2, 3 unchanged); m aS, 
m x6, m xS, m x578, m x678 like linear momenta (X = 0 unchanged, 1,2, 3 change 
sign); m x", m h/~57, m ~'/L67, m h~78 like angular momenta (h/~=23,31,12 
change sign, 01,02,03 unchanged); m xr m h'~58, m x~t68 like duals of angular 
momenta ()~/~ = 23,31,12 unchanged, 01,02,03 change sign). The self-dual 
combinations transform (f23, f31, f12) ~ __(f23, f31, f lZ) . , ( f01 ,  f02, f03) 

(f01, f02, f03)*, h,~ similarly. Thus D: ~ allows an antilinear representa- 
tion of time reversal and D 2~ a real linear one. 

5.9. Reduction of DaX (Da) *. Any second rank spinor of type qb 'iB 
can be decomposed, uniqu.ely int.o the sum of .a Hermi.tian and an. anti- 
Hermitian. part: ~A8 ----~IAB + . ~  B, where ( ~ ( B ) ,  = ~(A and (d~2Ae), = 

An 
_ ~ A .  We can now replace ~k , k = 1, 2 by linear combinations analogous 
t o  q,  m ab, m abcd (which were formed from the Hermitian second-rank spinor 
(4,A)*q,B): 

'I' k = fl,~ B r k 

, ] b = ( fl M ,~ b ) .A B Cp k/4 ~ 

r - -  [ iTl l t . 4abcd  ~ . d ' l f l B  
- -  \ p.~,~t ] AB"*" k (37) 

For k = 1 these quantities are real and for k = 2 purely imaginary. Under 
p+r and parity their transformations behavior is just as for q, m ab, m "hca. 
For the k = 1 components the same is also true for charge conjugation and 
time reversal. These operations are defined by obvious extension of (27) and 
(29) as 

( 4 , ) " '  = A : ' ]  * 

(,y-~)A'B = [(%p2) AE] * (@~) Er( %'O2 ) B F (38) 

The k = 2 components, being derived from the anti-Hermitian dPzAn, will 
undergo a sign change relative to k =1 components, or equivalently to 
q, m ab, m abcd, on account of the complex conjugation in (38). Thus if a 
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subset of the components ~1, ~]h, ~,~b~d belongs to a real representation D of 
P then the corresponding subset of ~2, ~b,  ~b~d will belong to sgn(L~ 

Collating the results of Sections 5.7 and 5.8, which pertain to the 
Hermitian spinor (~k '4 )*~k s, with those of Section 3 yields the decomposition 

[ D8•  (D8) * ] Hermitian = Dol~ sgn( L~ L)~D6 �9 (det L )D 6 

�9 D 1 5 ~ s g n ( L ~  2~ (39) 

with dimensions 64 = 1 + 1 + 6 + 6 + 15 + 15 + 20. In terms of the bilinear 
forms, (39) may be written (hbA)*~B=q@m78@mTs~mSSfgmrs@mrs78@ 
(m 'K58, m "r m x567, mX568). Of course the nontrivial indecomposable parts 
in the reduction (39), being themselves reducible but not completely re- 
ducible, admit invariant subrepresentations. For example, D 15 has the 
subrepresentations sgn(L ~ D~ and D 1~ to which belong m x4 and (rn xa, m '~ ), 
respectively, while (m 7x, m 47) and (m 8x, m 48) belong to the subrepresenta- 
tions D 5 and (det L ) D  5 contained in D 6 and (det L ) D  6. 

Inserting appropriate factors sgn(L ~ into (39) yields the decomposi- 
tion 

[D 8 X (D8)  * ] anfi-Hermitian 

= sgn(L~ �9 (det L ) �9 sgn(L~ D6 �9 sgn(L~ (det L ) D  6 

sgn( L ~ ) D 15 �9 (det L ) D x5 �9 sgn( L ~ ) D 2~ 

Taken together (39) and (40) give the full reduction of D 8 • (DS) *. 

(40) 

5.10. DsX D s, Symmetric Part. Any second-rank spinor ~As can be 
split uniquely into the sum of two parts, one symmetric in A and B and the 
other antisymmetric. The symmetric part will transform like the products 
~kA~k B of the components of a D 8 spinor ~b. We can form 36 linearly 
independent linear combinations of these products, which we shall take as 

= +Tc~ k and ~abcd ~_. ~bTCMabcd~ =__ _ (1/24)eabcaefgh~efgh. (Note that C and 
C M  abed are symmetric matrices while the C M  ab are antisymmetric.) Let us 
now classify these 36 complex quantities according to their transformation 
properties under the Poincar6 group. With respect to proper orthochronous 
transformations the behavior is entirely analogous to that of Section 5.7 
with q ~ ~" and m abcd---~ ~abcd. Under the charge conjugation (27) ~"-~ -~'* 
and ~ b c d ~  _ (~abcd)*, SO that the real parts change sign while the imagin- 
ary parts are invariant. The parity behavior is again as in Section 5.8 with 
q ~ ~, mabcd _.~ ~abcd. The time reversal (29) replaces ~" by ~'*, and ~.~b~d by 
..[_ ( ~ a b c d ) .  according as "/302 commutes or anticommutes with M abcd. 
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Collating all these results we find that the real and imaginary parts of ~, 
~b~d belong to the real representations of P as follows (r, s = 0,1,2,3,5,6; 
L, K = 0,1,2,3): 

Re(~') --* 0~, Im(~') --* sgn(Z~), Re(~ "s78) ----> sgn(L~)(det L)D~5; 
I m ( ~  rs78) --* (det  L)D15;  Re(~.,~ss, ~tK68, ~t567, ~,568) ~ 0 2 0 ,  
im(~,,58, ~-,.68, ~-t567 ff*568) ~ sgn(LO)D20. Note that Re(~ "b~d) behaves like 
m "b~d (Section 5.9), consistent with the identity (~q,)rcM~b~dq~ -- ~/Mab~d~. 

Hence we have the resolution 

(D 8 X D8)symmetric = DI(~) s g n ( L ~  �9 (det L) D'5~ sgn( L~ L)D '5 

D 20 ~ sgn ( L ~ ) D 20 (41) 

5.11. o S •  D s, Antisymmetric Part. Consider a second-rank antisym- 
metric spinor ~ , 4 a = _  q~aa. Such a spinor cannot be formed (without 
complex conjugation) from the components of a single 0 s spinor g,A, but 
could, for example, be obtained as the antisymmetric product of two 
linearly independent spinors q,~, ~]" ~Aa_  A s B A -- qq~k2. We achieve ~1~2 -- can 
reduction of the antisymmetric part of the direct product D s x  D 8 by 
replacing q5 '~B by the 28 linearly independent combinations c b =  
(cMOb)AB~ AB, a, b = 0,1,2,3,5,6,7,8. 

The transformation properties of ~ob may be found by the techniques 
of Sections 5.7-5.10. Under P +r and parity Of b behaves just like m ~176 The 
charge conjugation (r As = (Cfl)'4k(Cfl)B~.(gpEF) * replaces q, ab by ( r  
Time reversal  (.~-I~)AB=('r3DE)AE(T3PE)BF((~) EF transforms Cb into 
_+ (q~,b), depending on whether ,r3p 2 anticommutes or commutes with M ab. 

The correspondence of the real and imaginary parts of c b  tO the real 
representations of P is ( r ,s=0,1,2,3,5,6):  Re(q~vs)-*sgn(L~ 
Im(q578) ~ (det L); Re(~ 7") ---, D 6, Im(q~ 7s) ~ sgn(L~ Re(q5 as) ---, 
(det L ) D  6, Im(~ as) --* sgn(L~ L)D6; Re(~") --* D 15, Im(~ rs) 
sgn(L~ 15. As a check we note that Re(q~ "b) behaves exactly as m "b 
(Section 5.9). That this should be so follows from the identity 
( cM~b) AB( cg~/ )AqjO - ~j Mabt~. 

Thus we obtain the decomposition 

8 (D 8 • D )amisymmetrlc 

= (det L) �9 sgn(Lo~ (det L ) ~D6 �9 sgn( L~ 6 

�9 (det L ) 0 6 e  sgn(Lo~ (det L) 06 ~D'5 �9 sgn( L ~  15 

(42) 
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Combining (41) and (42) now gives the complete resolution of D 8 • D 8 into 
indecomposable representations. We note that (39), (40), (41), (42) taken 
together indicate that D 8 •  * and D 8 •  D 8 have the same reduction. 
This is a consequence of the equivalence of (DS) * and D 8 expressed by (26). 
The detailed breakup, Hermitian, and anti-Hermitian for D g•  (DS) *, sym- 
metric and antisymmetric for D 8 • D 8, is of course different. 

5.12. Identities of  Pau l i -F ierz  Type. Here we give the D 8 analogs of 
the identities (22). A D 8 spinor is specified by 16 real parameters, the real 
and imaginary parts of ~A. We can form 136 linearly independent real linear 
combinations of the products CA~B,(~kACB)*,(~kA)*q~S which we take as 
q = ~q~, m ~h = ~M~hq~, m a b c d =  ~Mabcdt~ and the real and imaginary parts 
of ~" = d/rc+ and ~abcd __ d / T c M a b c d ~ .  These are the combinations introduced 
in Sections 5.7-5.11 to achieve reduction of D a x ( D S )  * and D 8 • D a. 

Since we have 136 (quadratic) functions of 16 dependent vari- 
ables we expect them to be subject to 120 independent constraints which 
originate from identities like (q,'4~kn)(q,E~ks)-(~bAqJ)(+Bq, r )  and 
[(q/~).~B][( ~E) .q : ]  _= [(q/4).qT][(q:).q,s] = (q/4q, e ) .  (q~Bq:). In Appendix 
B we derive the following identities: 

m a e m e b  = _ �88 + ~..~-) ~/gb (43) 

m a b m  cd -b m b c m  ad --k m C a m  bd 1 _abcdefgh._. ... 
= - -  -ff ~ m e f  m gh 

= qm,b ,d  + Re(~'*~ "'b'a) (44) 

ma~rn e boa = _ �88 ~sbmCa + ~1~8Cr~ ah + ~l~"m bc ) 

t im , a b c d  -- ~ (~" ~" ) (45)  

m,bcgmdelg = ~] [�88 c / -  m b f m  . .  + qmbcef)]  

n;" n;/I 
1 ~bd ~be ,0bf 

16 ~*~" 
(46) 

In (46) the summation sign indicates the sum of the nine terms obtained by 
independent cyclic interchange of a, b, c and of d, e, f .  
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Some interesting special cases of these identities which will prove useful 
in Section 6 are (K, A = 0,1,2,3): 

m~,m4 = ( m4 7 )2 -I- (m 48)2 (47) 

rn '478m~ 478=  --  �88 [ ( m 4 7 )  2 + (m48) 2] (48) 

Re(~'*~ "~478 )Re(~'*~" 478) = _ ]~..~. [(m47)~ + (m48)2] (49) 

mK4mK478 = 0 ( 5 0 )  

m~4Re( ~..~. 478) = 0 (51) 

m . 7 8 R e ( : . : / 7 8 )  = 0 (5 2) 

m"4( m7,, + ires,, ) = (m47+ im 48)(m 56 + i m  78 ) (53) 

rn~478(mT~ +ima,,)=(m47+irn48)(m5678 +�88 (54) 

Re(~*~478)(mT~ + ires,.)= (m 47 + im48)[Re(~*~5678)+ti~*~] (55) 

mKX(m47 + im48)-- (m 7~ + imS'C)m x4 + (m 7x + imSX)m'~4 

= q( m ~'47 -1- im ~h48 ) -t- Re(~" .~-x h47 ) ..1_/Re(~" .~-K x48 ) 

"E~Apv 7 =l [ (m~+imS~)m,4-- �89  ( 5 6 )  

As in previous sections a superscript 4 denotes the combination 5-6, thus 
m 47 ~ m 5 7 -  m 67, m r~48 ~- DI KA'58 --  m x~68, e tc .  

6. SPECULATIONS ON D s 

6.1. Introduction. Minkowski space M 4 has proved a very useful 
mathematical tool for modeling the macroscopic physical world in the 
absence of gravity. But on the microscopic scale the space-time continuum 
concept could well need modification, perhaps quantization in some sense. 
We certainly cannot apply our usual meter stick and clock operations to 
measure nuclear and subnuclear distances and times, which throws doubt 
on the meaning of the latter. 

Rzewuski (1958) suggested that Minkowski space vectors should be 
derived from a more basic four-dimensional space of complex spinors. His 
ideas were given a finn basis in the twistor theory of Penrose and coworkers, 
where the substructure behind M 4 is a complex projective 3-space whose 
points are 0(2,  4) spinors. These correspond to the null straight lines in M 4 
in the way described in Section 4. A space-time event is given as the 
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intersection of null lines, necessitating two or more twistors for its represen- 
tation. 

In n-twistor particle theory, n >/2, both the external and internal 
symmetries of massive particles can be modeled. For recent reviews see 
Rzewuski (1982) and Lukhcs et al. (1982). 

A different approach is taken by Nash (1980, 1981a), who replaces M 4 
as the basic manifold by what is in a rough sense a square root of M4, a real 
16-dimensional space constructed from pairs of real 0(3,  3) spinors subject 
to certain constraints. Nash finds quadratic forms in the 16 spinor compo- 
nents which model the usual position, momentum, and angular momentum 
variables of a free particle of arbitrary mass and spin. The Poincar6 
transformation properties of the 0(3,3)  spinors are given in terms of 
Penrose twistors. In a later paper Nash (1981b) modifies the twistor 
translation transformation law and adds to the pair of 0(3,  3) spinors a real 
scalar. These 17 variables transform together according to a nonlinear 
"hyperspinor"  transformation law and enable the motion of a charged 
particle in an external magnetic field to be modeled. 

The speculations of this section have a similar motivation to the above 
work based on twistors, i.e., a desire to find a primitive entity from which 
M 4 is derived. We expand on the idea expressed in an earlier paper (Derrick, 
1982) that the basic space is that of the D 8 spinors introduced in Section 5. 
Thus we postulate an eight-dimensional complex vector space whose coordi- 
nates ffA transform under Poincar6 transformations and under charge 
conjugation according to D 8. We show in this section how particle variables 
in Minkowski space can be modeled in terms of the bilinear forms 
q, m ab, m abed, the real linear combinations of (q,n),q~S defined in Section 
5.7. 

6.2. Identification of Particle Variables. A particle of nonzero rest mass 
m has associated with it a number of Poincar6 vectors and tensors. There is 
the position vector x ~, linear momentum p~, angular momentum j~x, spin 
angular momentum s ~x, and the Pauli-Lubanski  spin vector w ~. In the 
notation of Section 3, x ~ belongs to D 5, p~ to sgn(L~ (p~, j~x) to D l~ 
s ~x to D 6, and w ~ to (det L ) D  4. These quantities are not all independent but 
are constrained by the identities 

p~px = m2C 2 (57)  

p w<--o (58) 

j~x = x~pX _ xXp~ + s~X (59) 

s ~x= (rnc)-l~XZ~wzp~ (60) 
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Our basic postulate is that x ~, p~, j ,x ,  s,X, w ~ can be constructed from 
the bilinear quantities q, m ~ rn '~bcd formed from a D 8 spinor ~k A. In making 
the identification we are guided by two constraints. Firstly, the identities 
(57)-(60) must be a consequence of the identities (43)-(56). Secondly, we 
must match the Poincar6 transformation properties. 

Let us assume that m 47 and m 48 are not both zero, and define the 
Poincar~ scalar N = [(m47) 2 + (m48)2] 1/2. Then (47) shows that m'~4/N is a 
timelike unit vector, which belongs to sgn(L~ according to Section 5.9. 
From the explicit form (24) one readily shows that it is future pointing. 
Comparison with (57) then suggests the identification 

pr = ( mc )mK4//N 

= ~ P ~ r  (61) 

where we take l = h / ( m c )  in (13). We can regard N as a normalization 
denominator which ensures that ff and ~r  yield the same p" for any complex 
multiplier k. 

The relation of p~ to P" in (61) suggests that we define the "expectation 
value" of any 8 •  matrix ,s ( Z a ) =  ~ / N ,  ~k and ),~ yielding the 
same result. IfL, ais self adjoint with respect to r ,  i.e., .~at = fl.~fl, then (Za)  
is real. Note that such expectation values can take any value in the range 
+ oo because the denominator N can be as small as we like. Contrast this 
with the quantum mechanical averages ~bt.,g~b/4,t~b which must lie between 
the greatest and least eigenvalues for a Hermitian matrix .At'. 

The form p ' =  (P~)  of (61) now suggests that the particle angular 
momentum be identified similarly: 

j . x  = ( j~a } 

= hm"X/N  (62) 

which is consistent with (p ' ,  j , x )  belonging to D t~ 
Finally we can satisfy (58)-(60) by the identifications 

x" = / R e [ (  m 7" + i n  8" ) / ( m  47 + im48)] 

= [ h / ( m c ) ]  (m47m 7~ + m48m8") /N  2 (63) 

w ' =  - h (Im[(rn 7~ + i rnS") / (m 47 + im48)]-m78m~4/N 2 ) 

= h[ qm '~478 + Re(~'*~'~478)]/N 2 (64) 

s ~x = h ( m47[ qm Kx47 + Re({*~x47)] + m48[ qm ~x48 + Re({*{~x48)] } / N  2 

(65) 
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This can be seen by dividing (56) and (53) by ( m 4 7 +  im 48) and then taking 
the real and imaginary parts. As a check we note that the vectors given by 
(63), (64), (65) belong to D 5, (det L ) D  4, and D06 as required. The square of 
the spin is �89 = - w~w ~ = �88 z + ~ * ~ ) / N  2, where we have used (48), 
(49), and (52). 

The particle vectors and tensors assigned by (61)-(65) are all invariant 
under charge conjugation. How should we interpret quantities like 
q, rn ab'a, Re(~'), Re(~'abca), Im(~'*~ "~bca) which change sign on charge conju- 
gation? Either of the scalars q, Re(~') could be candidates for the charge. 
For the magnetic moment we need a D06 tensor which reverses on charge 
conjugation, and there are many possibilities to choose from: m gx47, 
Re(~x47) ,  (m47m~X47+ m48m~X48)/N 2, s 'X /q ,  Re(~*~'47)/q,  etc. Before 
making a definite assignment one needs to incorporate electromagnetic 
interactions into the theory. A tentative attempt in this direction is made in 
Section 6.4. 

A simplified assignment of particle variables was suggested in an earlier 
paper (Derrick, 1982). There q, was constrained to lie in the Poincar6 
invariant subspaces 

m 47= 1, m 48 = 0 ---- m 78 = ~" (66) 

We then obtain 

p ~ =  ( m c ) r n  ~4 

j~x  = hrn~X 

x ~ =  [ h / ( m c ) ] m  7~ 

w ~ = - hm8~ = hqm ~478 

S ~x = hqm ~x47 (67) 

In what follows we shall not assume the constraints (66) but retain the more 
general assignments (61)-(65), unless explicitly stated. 

6.3. Equations of Motion. Along the trajectory of a free particle we 
have evolution in proper time s according to ( m c )  d x ~ / d s  = p ' ,  dp~ /ds  = O, 
d j~X/ds  = O, d w ~ / d s  = 0. We can find equations of motion for q/4(s) such 
that the averages (61)-(64) evolve in this way. A suitable Hamiltonian 
formulation with ~k A and ~A = (qJ~)*flbA as conjugate variables is 

H = - m e N  

ih (d~bA/ds )  = O H / O ~ A  

ih ( d ~ A / d s  ) = - O H / O ~  "4 (68) 
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(68) leads to 

ih ( dq~/ds ) = EqJ (69) 

where " - = - m c ( m 4 7 M 4 7 + m 4 8 M 4 8 ) / N  is self-adjoint with respect to /3. 
Multiplying (69) by the projection operators, El, E 2 = �89 + %) = ~ �9 iM 56 
and using Ex'-- = 0 = "-E 2, E 2 -  = -- = .EE~ gives the alternative form 

ihd( Elq, ) / d s  = o 

ihd( E2q, ) /ds  = ~'( E~O/ ) (70) 

As a consequence of (69) the forms ~FqJ and qTCF~b satisfy 

ihd( ~Fq, )/ds = ~, [ F, E] r 

ihd( +rCF~b ) / d s  = ~rC[ F, E ] O/ (71) 

Applying (71) we find that the particle variables do indeed satisfy the 
correct equations of motion. In addition to p~, j~x  w ~ further constants of 
motion are m 47, m 48, m 78, q, ~, m 5678, ~5678, m~478 ~x478, m~X47, m~X48 ~x~47 

Though (69) is nonlinear it is readily solved on account of d E / d s  = 0, 
E 2 = 0 :  

+ ( s )  = ( I  - i s E / h  )q,(O) (72) 

In (72) --, being constant, may be evaluated using the s = 0 value of the 
spinor, +(0). 

6.4. Motion in an Electromagnetic Field. In a constant external elec- 
tromagnetic field F ~x the trajectory of a particle of charge e is given by 

d x ' /  ds = v" 

a:/as [el(m:)] r':" (73) 

We shall assume that x ~ is derived from a D 8 spinor q~ according to (63) and 
v ~ = m ' n / N . i n  analogy with (61). 

Integrating (73) gives [ e / ( m c 2 ) ] F ' x x X - v  ~= const---a ~, say, so that 
(73) takes the form 

dx~/ds = oY'xx x - a" 

dv~/ds = ~o~xv x (74) 
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with ~o,x= [e/(mc2)]Fxx. Hence in proper time ds a coordinate frame 
attached to the particle undergoes a translation a ~ ds and a Lorentz transfor- 
mation r ds. Since the matrices P~ and j , x  of (24) generate translations 
and Lorentz transformations, respectively, the change in ~p in proper time ds 
is 

d+  = ( -  ia, e - )q, a s / h  (75) 

Eliminating the constants a~ and %x in favor of v~ and F,x then yields the 
equation of motion 

ihdq, /ds= [-v~P~+eF~x(J~X-x~PX+xXP~)/(2mc2)]q~ (76) 

In Appendix B Pauli-Fierz-like identities (77) are exploited to cast (76) into 
a form more like (69). The Pauli-Lubanski vector evolves as a consequence 
of (76) according to dw'/ds = [ e / ( m c  z)] F~xw x. When the magnetic moment 
is anomalous we can obtain the Bargmann-Michel-Telegdi  equation for w ~ 
by replacing F~x in (76) by �89 +(�89 -1)(v~ Fx~ , - vxF~)v ~. This parallels 
the hyperspinor treatment of Nash (1981b). 

6.5. Scope for Further Work. If the speculations of Section 6 are to 
form the basis of a viable theory then one needs a satisfactory treatment of 
the interrelated problems of (a) many-particle theory, (b) interactions, (c) 
quantization. 

Concerning (a), at the crudest level one could represent an n-particle 
system by n different D 8 spinors ~p~, ~p~ . . . . .  ~k~, and generate equations of 
particle motion from some Poincar~ invariant Hamiltonian formed from 
these variables. An alternative treatment might be based on a D 8 spinor of 
rank n , ~  "4~A2''4., with the possibility of incorporating Bose and Fermi 
statistics through the symmetry properties of the indices. 

With respect to problem (b), interactions, we can readily construct 
ad hoc theories for particular interactions along the lines of Section 6.4. At a 
more fundamental level one could seek a generalization of the D 8 geometry 
analogous to the transition from the special theory of relativity to the 
general theory. Here we have two types of metric, CAB and fl, iB, which in a 
generalized theory might be replaced by functions of ~pE and of ~pe (tpF)., 
respectively. Under a general analytic coordinate transformation (~pA),= 
function (~pB) in a local coordinate patch we would have the transformation 
laws (CAg)'=CEFJEAJFB and (fl, iB)' " E . F = fiEF( J .4) J B, where J E  A = 

0 q~E/0 (~kA),. One possibility would be to introduce an "achtbein" u (A i e (q~) 
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transforming as [uCA)e]'= u(A)BJB E with CeF = COBu(A)Eu(B) F and fiEF = 
flOB[u(A'e]*UCm v. C~ and B~ refer to the constant "f iat  space" values. 
One would then seek differential field equations for the u(A) E which are 
invariant both under arbitrary coordinate changes q , e ~  (~ke), and under 
D 8 transformations of the achtbein superscript (A). 

Finally, the question (c) of quantisation could be approached via the 
Wigner operators ah _ _ (M,b M~9 v -  )EF+FO/o~E which satisfy the same 
SO(2,6) commutators as the matrices M ab. The problem is to define a 
suitable linear vector space of analytic functions of q,A on which the M ~  
operate. We need to define a scalar product in this space in such a way that 

= h M ~ p / l  and j~ex = hM~X become Hermitian operators on a Hilbert p~p x4 

space. If this can be done then the simultaneous eigenstates of Pc~p would be 
interpreted as energy-momentum eigenstates. 

These questions will be addressed in subsequent publications. 

APPENDIX A: EXPLICIT VALUES OF M "h, M abcd 

In terms of the three copies of the Pauli matrices o, p, ,r introduced in 
Section 5.2, the SO(2,6) generators M ab are 

( M  23 , M 31 , M 12 ) = �89 

( M m, M 02 ' M 03 ) = �89 

(M~ M15, M25, M35) = �89 (i02; 03 o) 

(M~ M 16, M 26, M 36 ) = �89 (i02 ; P3o) 

( g ~  gXT, M27, M37) = - �89 (i02; P30) 

(M~ M18, M28, M38) = 3 ( -  io3; Oz o)  

M 56 = �89 

M 67 = _ �89 

M57 = 1'12, M58 = - �89 

M 68 = -- �89 M 78 = �89 I 

The products M ahcd= MabM ca =- -(1/24)eabcde/ghMelgh ( a, b, c, d all 
different) are given below. To save writing we omit the symbol M and 
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a b b r e v i a t e  M abed to abed: 

0123 = 5678 = �88 

(1235;0235,0315,0125)  = - (0678; 1678,2678,3678) 

= ~ ' , ( P 3 ;  ip2o) 

(1236; 0236,0316,0126)  -- - (0578; 1578,2578,3578) 

= �88 iP20) 

(1237; 0237,0317,0127)  = - (0568; 1568,2568, 3568) 

= - �88 iP2a) 

(1238;0238,0318,0128)  = (0567; 1567, 2567, 3567) 

=�88 

(2356, 3156,1256) = (0178,0278,0378)  

= �88 i,r3o 

(0156,0256,0356)  = - (2378, 3178,1278) 

= _ �88 

(2357, 3157,1257) -- (0168,0268,0368)  

= � 8 8  

(0157,0257,0357)  -- - (2368,3168,1268)  

= �88 

(2358,3158,1258)  = - (0167,0267,0367)  

= - -  � 8 8  

(0158,0258,0358)  = (2367, 3167,1267) 

= _ �88  o 

Taken  together  the M ab, M abca are infinitesimal genera tors  of  SU(4, 4). 
The  c o m m u t a t o r s  [ M  ~b, M ca] are those of  the SO(2 ,6)  subgroup  and are 
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given by  (23). The  remaining c o m m u t a t o r s  are 

[ M ab, M ca"/] = i( l?bcMade/+ ~lbaM ~ae/+ 71b"M "daf + 71hiM ~de" -- a ~ b ) 

[ M "b~a, M ~/gh ] = ~i( ~l'~eeb"~/g~JkMjk + 15 similar terms)  

*1~ e ~1~ I ~ s  M dh 
_�88 11~/ ~bg +15 similar terms 

,7 i 

The  omit ted  terms above are those needed to an t i symmetr ize  the r ight-hand 
side with respect  to bo th  a, b, c, d and e, f ,  g, h. 

APPENDIX B: PROOF OF (43) TO (46) 

Direct  p roof  of  these identities would require an inordinate  a m o u n t  of  
writing. Ins tead we exploit  their S0(2,  6) tensor  form, which implies that  if 
they are true for a par t icular  D 8 spinor  q, they are also true for any  spinor  q, 
der ivable  f rom q, by an SO(2 ,6)  t r ans fo rmat ion  exp(~8~) ,  viz. q,--  
exp(- �89 Here  [~ab] is an arb i t ra ry  an t i symmetr ic  8 • 8 matr ix.  
Our  me thod  of p roof  is to verify the identit ies for  a sp inor  q~ of par t icular ly  
s imple  form, then show that  a sufficiently dense set of  spinors ~p can be 
t r ans fo rmed  into q~ for the identities to be  true in general.  

The  special spinor  adop t ed  is q~=(az, a2,0,O,O,O,a 1, - a 2 )  r, where 
a 1, a 2 are complex  numbers  of  which at least one does not  vanish. The  
nonzero  values of  m a b  ---- ~mabd? a r e  m 3 7 =  m 58 = - m zz = - m 0 6  = [all 2 + 

la212, while q = q~q~ = 2(la212 -- lall 2) and ~" = d~Tcd~ = 4aza 2. Similar s imple 
expressions apply  to m abca= ~M~~ and ~ h C d =  eTCM,br for each of 
which only 11 fail to vanish. It  is now a trivial ma t t e r  to verify (43)-(46)  for 
this s imple case. 

We now have to prove  the following: 

Theorem. Given  any two D 8 spinors  ~,q~ which have the same 
B-norms ~qJ = q~-~ = q  and C-norms  q~Tcq~ = d ~ T c ~  = ~, then if q, ~" 
are not  bo th  zero we can t rans form q~ into ~k by  a D 8 t r ans forma-  
tion, i.e., D = exp( - �89 Mab) exists such that  qJ = Dq~. 

Proof. Suppose  first that  q q= 0. The  four  vectors  q~, r ~k, ~g~k have the 
f l -norms q~q~ = q, ~q,~'q, -- - q, qTq, -- q, cgq~,qj = _ q. Since fl has eigenval- 
ues 1 , 1 , 1 , 1 , - 1 , - 1 , - 1 , - 1  we can find a vector  X of f l -norm XX = q 
or thogona l  to the four  vectors:  ~q~ = O, ~ffq~ = O, X~k = O, X~'~k = O. ~ X  is 
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or thogonal  to the same vectors and has f l-norm - q .  N o w  we can always 
choose X such that xrCx- -~ .  For  if x r C x = O  then X'=XcoshO+ 
CgX(~/l~l)sinhO with s inh20 = [~l/q has the desired property.  Otherwise, if 
xrCx  = v r 0 we first construct  X0 = [Xcosh00 - CgX(u/l~l)sinhOo]/cosh20o 
with sinh200 = Ivl/q, which satisfies XoXo = q, xrCXo = 0, then proceed as 
before. 

Let us assume then that XrCX = ~'. Define 

h z = i z  ( q[ ~ -- X~-(cgX) crc + ( cg~)xrC 

+ r215 X, ~) C + ~ [(~X)$- ( ~ )  ~] ) 

where z is a real parameter.  We have A t = flAlfl and A r = --CAzC, which 
means that A 1 is a linear combina t ion  of  M "~ with real coefficients, 
Al = v_--l~b-'-10 lVt-O with f~l~b=�89 By explicit calculation we find 
[exp(iA1)]q, = q, c o s a  + x s i n a  with a =  z(q 2 + 1ff12). Choose  a=�89 so that 
[exp(iA1)]q~ = X- A A 2 of  similar form exists for which [exp(iA2)]~ k = X, 
whence D = e x p ( - i A 2 ) e x p ( i A 1 )  is a D s t ransformat ion effecting the map-  
ping qJ = D,~. Because of  the group representat ion proper ty  D = 
e x p ( -  �89 Mab) for some f~,b- 

If  we have q = 0, ~ 4 :0  the argument  proceeds as before with the roles 
of  the f l-norm and the C-norm interchanged. This completes the proof  of  
the theorem. 

Hence we have proved the identities provided q and ~ are not  both  
zero. However  because of  the continui ty of  the bilinear forms with respect 
to ~p the identities remain true in the limit q = ~ = 0 so that they are true for 
all ~k. 

Fur ther  Paul i -F ie rz - type  identities can be derived by  the technique of  
t ransforming ~k to the special form ~. Two interesting identities which lead 
to an alternative form of (76) are 

( maeMeb _ �89 )~p = _ (liMa b + �88 )( q~ _ ~r 

(maOM ca + maCM ab + madMb"--2im~MbCd/)+ 

= [M~b~d--�89 ~d + ~?~M db 

+ 71~dMbr ( qt~ -- ~cg~b ) (77) 

With  the a id  of (77) the terms on the r ight-hand side of  (76) have the 
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a l t e rna t ive  forms  

v, P ~ = mc ( m 47M47 + m 48M48 ) ~ b / N  

Derrick 

( j , , x  _ x~pX + xXp~)  ~ / h  = 2 i [ ( m c / h  )x~,M ~x~'4 - M '~x56 

+ m78( m47M pO,48 _ m48MXh47 )/N 2] 

+ ( m 47M~ x47 + m 48M~ x48 ) ( qq, _ ~,~g+ ) / N  z 
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